Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b.
نویسندگان
چکیده
Methanobactin is an extracellular, copper-binding chromopeptide from the methane-oxidizing bacterium, Methylosinus trichosporium OB3b, believed to be involved in copper detoxification, sequestration, and uptake. Although small (1217.2 Da), methanobactin possesses a complex three-dimensional macrocyclic structure with several unusual moieties. The molecule binds one copper and has the N-2-isopropylester-(4-thionyl-5-hydroxyimidazolate)-Gly(1)-Ser(2)-Cys(3)-Tyr(4)-pyrrolidine-(4-hydroxy-5-thionylimidazolate)-Ser(5)-Cys(6)-Met(7) sequence [Kim, H. J., et al. (2004) Science 305, 1612-1615]. We report methods for purifying methanobactin from M. trichosporium OB3b and present initial evidence of its physiological function. MALDI-TOF MS was used to systematically monitor samples for optimizing purification conditions, and for detecting and analyzing specific metal-methanobactin complexes. Purification was performed by first stabilizing the extracted compound with copper followed by separation using reversed-phase HPLC in neutral pH buffers. Purified methanobactin exhibited UV-visible maxima at 342 nm, a shoulder at 388 nm, and a broad peak at 282 nm. These features were lost upon CuCl(2) titration with appearance of new features at 335, 356, 290, and 255 nm. Furthermore, methanobactin contains two fluorescent moieties, which exhibit broad emissions at 440-460 nm (lambda(max)(ex) at 388 nm) and 390-430 nm (lambda(max)(ex) = 342 nm), respectively. Finally, methanobactin eliminates the growth lag in M. trichosporium OB3b and substantially increases growth rates when cultures are exposed to elevated copper levels.
منابع مشابه
Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b.
Many methanotrophs have been shown to synthesize methanobactin, a novel biogenic copper-chelating agent or chalkophore. Methanobactin binds copper via two heterocyclic rings with associated enethiol groups. The structure of methanobactin suggests that it can bind other metals, including mercury. Here we report that methanobactin from Methylosinus trichosporium OB3b does indeed bind mercury when...
متن کاملIsolation and purification of Cu-free methanobactin from Methylosinus trichosporium OB3b
BACKGROUND The isolation of highly pure copper-free methanobactin is a prerequisite for the investigation of the biogeochemical functions of this chalkophore molecule produced by methane oxidizing bacteria. Here, we report a purification method for methanobactin from Methylosinus trichosporium OB3b cultures based on reversed-phase HPLC fractionation used in combination with a previously reporte...
متن کاملMethanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.
Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus tr...
متن کاملMethanobactin and MmoD work in concert to act as the 'copper-switch' in methanotrophs.
Biological oxidation of methane to methanol by aerobic bacteria is catalysed by two different enzymes, the cytoplasmic or soluble methane monooxygenase (sMMO) and the membrane-bound or particulate methane monooxygenase (pMMO). Expression of MMOs is controlled by a 'copper-switch', i.e. sMMO is only expressed at very low copper : biomass ratios, while pMMO expression increases as this ratio incr...
متن کاملGenome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b.
Methylosinus trichosporium OB3b (for "oddball" strain 3b) is an obligate aerobic methane-oxidizing alphaproteobacterium that was originally isolated in 1970 by Roger Whittenbury and colleagues. This strain has since been used extensively to elucidate the structure and function of several key enzymes of methane oxidation, including both particulate and soluble methane monooxygenase (sMMO) and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 44 13 شماره
صفحات -
تاریخ انتشار 2005